Pulse Increase of Soil N2O Emission in Response to N Addition in a Temperate Forest on Mt Changbai, Northeast China
نویسندگان
چکیده
Nitrogen (N) deposition has increased significantly globally since the industrial revolution. Previous studies on the response of gaseous emissions to N deposition have shown controversial results, pointing to the system-specific effect of N addition. Here we conducted an N addition experiment in a temperate natural forest in northeastern China to test how potential changes in N deposition alter soil N2O emission and its sources from nitrification and denitrification. Soil N2O emission was measured using closed chamber method and a separate incubation experiment using acetylene inhibition method was carried out to determine denitrification fluxes and the contribution of nitrification and denitrification to N2O emissions between Jul. and Oct. 2012. An NH4NO3 addition of 50 kg N/ha/yr significantly increased N2O and N2 emissions, but their "pulse emission" induced by N addition only lasted for two weeks. Mean nitrification-derived N2O to denitrification-derived N2O ratio was 0.56 in control plots, indicating higher contribution of denitrification to N2O emissions in the study area, and this ratio was not influenced by N addition. The N2O to (N2+N2O) ratio was 0.41-0.55 in control plots and was reduced by N addition at one sampling time point. Based on this short term experiment, we propose that N2O and denitrification rate might increase with increasing N deposition at least by the same fold in the future, which would deteriorate global warming problems.
منابع مشابه
Rainfall reduction amplifies the stimulatory effect of nitrogen addition on N2O emissions from a temperate forest soil
Soil is a significant source of atmospheric N2O, and soil N2O emissions at a global scale are greatly affected by environment changes that include continuous deposition of atmospheric nitrogen and changing precipitation distribution. However, to date, field simulations of multiple factors that control the interaction between nitrogen deposition and precipitation on forest soil N2O emissions are...
متن کاملFive-year study of the effects of simulated nitrogen deposition levels and forms on soil nitrous oxide emissions from a temperate forest in northern China
Few studies have quantified the effects of different levels and forms of nitrogen (N) deposition on soil nitrous oxide (N2O) emissions from temperate forest soils. A 5-year field experiment was conducted to investigate the effects of multiple forms and levels of N additions on soil N2O emissions, by using the static closed chamber method at Xi Mountain Experimental Forest Station in northern Ch...
متن کاملSoil Nematode Responses to Increases in Nitrogen Deposition and Precipitation in a Temperate Forest
The environmental changes arising from nitrogen (N) deposition and precipitation influence soil ecological processes in forest ecosystems. However, the corresponding effects of environmental changes on soil biota are poorly known. Soil nematodes are the important bioindicator of soil environmental change, and their responses play a key role in the feedbacks of terrestrial ecosystems to climate ...
متن کاملNitrogen and phosphorus addition impact soil N2O emission in a secondary tropical forest of South China
Nutrient availability greatly regulates ecosystem processes and functions of tropical forests. However, few studies have explored impacts of N addition (aN), P addition (aP) and N × P interaction on tropical forests N₂O fluxes. We established an N and P addition experiment in a tropical forest to test whether: (1) N addition would increase N₂O emission and nitrification, and (2) P addition woul...
متن کاملEffects of Increased Nitrogen Availability on C and N Cycles in Tropical Forests: A Meta-Analysis
Atmospheric N deposition is predicted to increase four times over its current status in tropical forests by 2030. Our ability to understand the effects of N enrichment on C and N cycles is being challenged by the large heterogeneity of the tropical forest biome. The specific response will depend on the forest's nutrient status; however, few studies of N addition appear to incorporate the nutrie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014